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ABSTRACT
Reversible logic is a building block for adiabatic and quantum com-

puting in addition to other applications. Since common functions

are non-reversible, one needs to embed them into proper-size re-

versible functions by adding ancillary inputs and garbage outputs.

We explore the Intellectual Property (IP) piracy of reversible cir-

cuits. The number of embeddings of regular functions in a reversible

function and the percent of leaked ancillary inputs measure the

difficulty of recovering the embedded function. To illustrate the

key concepts, we study reversible logic circuits designed using re-

versible logic synthesis tools based on Binary Decision Diagrams

and Quantum Multi-valued Decision Diagrams.

KEYWORDS
Reversible logic, IC/IP piracy, Security, Number of embeddings,

BDD, QMDD, Ancillary inputs, Garbage outputs.

1 INTRODUCTION
The globalization of the design flow of Integrated Circuits (ICs)

introduces security vulnerabilities. Intellectual Property (IP) piracy

reveals design details to a fab, and other malicious parties at the

different stages in the supply chain [1, 2]. Knowledge of the design

can allow one to identify sensitive parts of the design, to make

malicious modifications, and to co-opt the IP.

Reversible circuits implement bijective n × n functions that map

each possible input to a unique output. Reversible circuits can be

used for quantum computing [3], adiabatic computing [4–7], en-

coder/decoder design [8–10], and optical computing [11, 12]. In

the near future, reversible computing is expected to be an alter-

native design methodology for low-power circuits [13]. A recent

summary argues that the future of computing depends on “mak-

ing it reversible” [13]. Efforts are underway to realize low-power

reversible circuits [14, 15].

Reversible circuits differ from conventional circuits and hence

have different constraints vis-a-vis IC/IP piracy attacks and de-

fenses. Reversible circuits embed the originally intended function

(which might not be reversible) into a reversible one. This intro-

duces so-called ancillary inputs and garbage outputs, which already

might obfuscate the function from an attacker’s perspective. In

this paper, we provide IC/IP piracy assessment of reversible logic.

We assume that the design-manufacture-test flow for reversible

circuits is similar to that for conventional circuits – exposing them

to similar risks.

1.1 Related Work
Researchers have considered the IC/IP piracy problem and de-

veloped Design-for-Trust techniques to thwart IC/IP piracy in

CMOS-based logic circuits. Logic obfuscation hides the implemen-

tation and the functionality of the design by including additional

gates, which are controlled by a secret key [16–18]. IC camouflaging

is a layout-level protection from a malicious end user preventing

her from extracting the gate-level implementation of the design [19–

21]. In camouflaging, layouts of all standard logic gates are designed

to look alike. These techniques target conventional CMOS.

A recent study provides the first step in launching IP piracy

attacks on reversible circuits [22]. Synthesis approaches employed

to generate reversible circuits have telltale clues in the circuits,

which can expose the synthesis approach. Hardware Trojans are

another security vulnerability in the IC supply chain. Hardware

Trojans in reversible circuits have been considered in [23], where

the difficulty of detecting Trojans inserted into reversible circuits is

assessed. However, thus far, no assessment of the difficulty of recov-

ering the functionality of a reversible circuit has been conducted

yet. This is considered in the following.

The paper is organized as follows. Section 2 provides the back-

ground on reversible logic. The motivation, threat model, and our

analysis of the number of embeddings are described in Section 3.

IP piracy of reversible circuits is analyzed in Section 4. Results in

Section 5 demonstrate the difficulty of recovering functions em-

bedded into reversible circuits and report the number of possible

embeddings faced by an attacker. We conclude with remarks on

the feasibility of this problem and the threat model in Section 6.

2 BACKGROUND
Weprovide an overview of reversible logic and synthesis approaches

to embed a target function into a reversible circuit.

2.1 Reversible Logic
A reversible circuit implements a bijection wherein a computation is

performed in both directions (i.e. inputs→ outputs and vice-versa).

Reversible circuits are implemented as cascades of reversible

gates. Each reversible gate over the inputs X = {x1, . . . ,xn } con-
sists of a (possibly empty) set Ci ⊆ {x j | x j ∈ X } ∪ {x j | x j ∈ X }

of positive (x j ) and negative (x j ) control lines and a setT ⊂ X \C of

target lines. The most commonly used reversible gate is the Toffoli
gateTOF (C,xt ) [24].TOF (C,xt ) consists of a target line xt ∈ X \C



whose value is inverted if all values on the positive (negative) con-

trol lines are set to 1 (0) or if C = ∅. All other lines are unaltered.

To realize non-reversible functions, ancillary inputs and garbage
outputs are used. An ancillary input of a reversible circuit is an

input that is set to a fixed value (0 or 1). A garbage output of a

reversible circuit is a don’t care for all inputs.

Example 1. Figure 1 shows a full adder design using reversible
gates. The top ancillary input of the circuit is set to 0. The bottom two
outputs are don’t care garbage outputs. For the input x1x2x3x4 = 0100,
the leftmost gateд1 = TOF ({x3,x4},x1) passes the value on the target
line x1 unaltered since the two positive control lines are 0.
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Figure 1: Reversible logic implementation of a full adder.

2.2 Reversible Logic Synthesis
Several approaches to reversible logic synthesis have been pro-

posed [25–28]. These approaches either implicitly [25, 26] or explic-

itly [27, 28] embed a function into a proper-size reversible function.

Example 2. Consider the full adder in Table 1(a). The full adder
has the carry in cin and summands x and y as the inputs and the
carry out cout and the sum as the outputs. The full adder is not
reversible since (1) the number of inputs is not equal to the number
of outputs and (2) there is no unique input-output mapping. Adding
an additional output to the function does not make it reversible. The
first four rows of the truth table can be embedded with respect to
reversibility as shown in the rightmost column of Table 1(a). However,
since cout = 0 and sum = 1 appear twice (marked in bold), a unique
embedding for the fifth row of the truth table is not possible. The same
holds for the italicized rows. One possible embedding of the full adder
is shown in Table 1(b). Here, the full adder is obtained if the ancillary
input is set to 0. д1 and д2 are the garbage outputs.

Table 1: Embedding a full adder into 4x4 reversible logic.

(a) Full Adder

cin x y cout sum

0 0 0 0 0 0

0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 0 1 ?
1 0 1 1 0 1
1 1 0 1 0 ?
1 1 1 1 1 1

(b) Embedding

0 cin x y cout sum д1 д2
0 0 0 0 0 0 0 0

0 0 0 1 0 1 1 1

0 0 1 0 0 1 1 0

0 0 1 1 1 0 0 1

0 1 0 0 0 1 0 0

0 1 0 1 1 0 1 1

0 1 1 0 1 0 1 0

0 1 1 1 1 1 0 1

1 0 0 0 1 0 0 0

In the following, we briefly review the reversible logic synthesis

approaches considered for IC/IP piracy assessment.

2.2.1 BDD-based Reversible Logic Synthesis. BDD-based synthe-
sis introduced in [26] embeds the function implicitly. The function

is specified as a Binary Decision Diagram (BDD) [29]. A BDD is a

directed acyclic graphG = (V ,E) where a Shannon decomposition

f = x i · fxi=0 + xi · fxi=1

is carried out in each node v ∈ V . The function fxi=0 (fxi=1) is the
negative (positive) co-factor of f obtained by assigning xi to 0 (1). In
this paper, the node representing fxi=0 (fxi=1) is denoted by low(v)
(high(v)), while xi is the select variable.

Example 3. Figure 2 shows a BDD representing f = x1x2x3x4 +
x1x2x3x4 + x1x2x3x4 + x1x2x3x4 and the respective co-factors using
Shannon decomposition.

Figure 2: BDD of f = x1x2x3x4+x1x2x3x4+x1x2x3x4+x1x2x3x4

Given a BDDG = (V ,E) of a function, a reversible circuit can be

derived. All nodes v ∈ V of G are traversed depth-first and substi-

tuted with a cascade of reversible gates. The cascade of gates de-

pends on the successors of the node v . Figure 3 shows the mapping

between different nodes in the BDD and the reversible sub-circuits.

This process requires an ancillary circuit line in order to realize

the non-reversible decomposition employed in a node. To obtain a

reversible circuit realizing f , the entire BDD is traversed.
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Figure 3: Reversible cascades representing Shannon decom-
position of BDD.High(f ) (low(f )) indicates the value of func-
tion f when the input xi is set to 1 (0).
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Figure 4: A reversible circuit derived from the BDD of func-
tion f , where pi is the ith partition of the reversible circuit.

Example 4. Consider the BDD from Figure 2. The co-factor f1
can be represented by the primary input x4. The co-factor f2 can be
realized by the first two gates in Figure 41. This way sub-circuits of all
the co-factors are composed to realize the function f . The remaining
steps are shown in Figure 4.

2.2.2 QMDD-based Reversible Logic Synthesis. QMDD-based

synthesis [28] embeds the function explicitly. The function is speci-

fied as a Quantum Multi-valued Decision Diagram (QMDD) which

is a compact representation of a reversible function/permutation

matrix [30]. In QMDDs, the function is decomposed by its most

significant variable xi yielding four sub-matrices, each of them rep-

resents one of the four possible mappings of xi . The sub-matrices

M0−>0,M1−>0,M0−>1, andM1−>1, map the variable xi from 0 to

0, 1 to 0, 0 to 1, and 1 to 1, respectively. Toffoli gates can be applied

to swap the columns of the permutation matrixM and, by this, to

form the identity matrix. Those gates can be applied in reverse to

eventually form a circuit realizing the desired function (see [28] for

details). Since this approach works if the given function is reversible,

the original function has to be explicitly embedded first
2
. That is,

ancillary inputs and garbage outputs which make the function re-

versible are determined during embedding. The function embedded

into a reversible circuit remains hidden for different values and

locations of ancillary inputs and garbage outputs.

Different embedding approaches can be used as a pre-processing

step. While a random embedding can generate the reversible func-

tion, it is inefficient and does not scale. Scalable algorithmic embed-

dings reduce the run time and we consider the embedding method

from [32]. This method guarantees a minimum number of ancillary

inputs and garbage outputs. The resulting permutation matrix is

divided into sub-matrices to determine the input-output combina-

tions mapping. A sub-matrix may consist of don’t care assignments

(x), potential functional input-output assignments (*), and no as-

signment (0). The embedding transposes the matrix to the identity

matrix to assign (*) and (x ) entries with actual values; the functional
input assignments are moved to the diagonal of the permutation

matrix using swap operations of columns with hamming distance

of 1. Each swap is implemented using a Toffoli gate.

Example 5. To transform the permutation matrix of Figure 5(b)
to the identity matrix, the input combination of the seventh column
from the left is swapped with the eighth column. The updated input
1
An additional circuit line is added to preserve the values of x4 and x3 which are

needed by the co-factors f3 and f4 .
2
A QMDD synthesis approach embeds and synthesizes in one step [31].

combination of the eighth column is swapped with the one in the
fourth column resulting in the identity matrix. All the (*) and (x)
entries in the main diagonal are assigned to 1. The resulting reversible
embedding and circuit are shown in Figure 5(c) and (d), respectively.

3 MOTIVATION AND THREAT MODEL
Reversible circuits generated by state-of-the-art synthesis tools are

challenging for an adversary aiming to recover the functionality of

the circuit even if he/she has access to gate-level implementations.

We illustrate these challenges, discuss the threat model and count

the number of embeddings in the reversible circuit.

3.1 IP Piracy: Challenges and Threat Model
An adversary with access to the gate-level implementation of a

reversible function can trivially identify the function. However,

when a non-reversible function is embedded in a reversible function,

the adversary who is unaware of the location of the inputs and

outputs of the target function can not easily identify the location

and the value of the ancillary inputs and the location of the garbage

outputs. Both are essential to extract the function.

Example 6. Consider the full adder embedding in Figure 1. If the
attacker is unaware of the location and values of the ancillary inputs,
he/she cannot determine the target function. If cin is the ancillary
input, setting cin to 0, results in sum = x ⊕ y, while setting cin to 1,
results in sum = x ⊕ y. Distinguishing between the primary care
outputs and the garbage don’t care outputs is another challenge. In
Figure 1, any of the four outputs can be a garbage output.

We consider an attacker in the foundry with access to the gate-

level implementation of a reversible circuit. The I/Os of the re-

versible circuits are connected to the I/O pins of the chip. Even, if

the location of the ancillary inputs is known to the attacker, the un-

known values of the ancillary inputs and the location of the garbage

outputs may obfuscate the function. In an untrusted foundry threat

model, the attacker does not have access to a functional chip [33, 34]

3.2 Number of Embeddings as a Security Metric
The number of embeddings quantifies the difficulty of IC/IP piracy.

Our analysis applies to the base-case where an attacker does not

know the location of the ancillary inputs and garbage outputs and

the value of the ancillary inputs.

Consider ann×n reversible function f (x1, · · · ,xn ) = (y1, · · · ,yn ).
Each xi is either a primary or an ancillary input, while each yi , is
either a primary or a garbage output. Each output yi , is computed

as yi = fi (xi1 ,xi2 , · · · ,ximi
), wheremi (1 ≤ mi ≤ n) is the number

of inputs that drive yi . Let ki (0 ≤ ki ≤ mi ) be the number of

inputs that drive yi but not yp , where p is in the interval 1 to i − 1

(1 ≤ p < i). The number of functions embedded in yi is obtained
by considering any subset of the ki inputs as ancillary inputs:

e(ki ) =

ki∑
j=0

C(ki , j) × 2
j

(1)
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Figure 5: Embedding into a reversible function: (a) The truth table of the target function f . (b) The permutation matrix of f
after adding an ancillary input x1 and a garbage output y1. The target function is activated when x1 = 0. (c) The reversible
function after swapping columns to yield the identity matrix. (d) The resulting reversible circuit.

The binomial coefficient C(ki , j) is the number of ways one can

select j un-ordered ancillary inputs from ki . The number of embed-

ded functions with n primary outputs is

E(n,K) =
n∏
i=1

e(ki ) (2)

where K = {k1, . . . ,kn }.
Each output of a reversible circuit is either a primary or a garbage

output. Thus, the number of functions embedded into an n × n
reversible circuit is:

EMB(n,K) = (2n − 1) × E(n,K) (3)

where 2
n−1 is all possible combinations of output bits of a reversible

circuit. We subtract one to exclude the case where all outputs of a

reversible circuit are garbage.

Example 7. In Figure 1, k1 = 4,k2 = 0,k3 = 0 and k4 = 0. Thus,
e1 = 81, e2 = 1, e3 = 1, and e4 = 1. The number of embedding is
81 × (24 − 1) = 1215.

At a first glance, it seems difficult to derive the target function.

The next section evaluates the difficulty (or ease) of IC/IP piracy of

reversible circuits.

4 IP PIRACY OF REVERSIBLE CIRCUITS
4.1 The Attack Principle
The attacker can recover the target function from a reversible circuit

in two steps as illustrated in Figure 6. First, the attacker identifies the

synthesis approach used to generate the reversible circuit [22]. Next,

the attacker reconstructs the target function from the reversible

circuit using the properties of the synthesis approach, referred to

as de-synthesis.

Reversible logic synthesis approaches leave telltale signs in the

circuits, which can be used to reveal the synthesis approach [22].We

consider reversible circuits obtained using BDD- [26] and QMDD-

based synthesis [32]. De-synthesis applies to other reversible logic

synthesis approaches as well.

4.2 Desynthesis of BDD-based Reversible Logic
BDD-based synthesis yields reversible logic with two telltale signs.

(1) The primary inputs are connected to garbage outputs.

(2) The target line of a reversible gate that doesn’t control any

successor gate is connected to a primary output.

Example 8. Consider the circuit created by a BDD-based synthesis
approach in Figure 4. The positions of the ancillary inputs and garbage
outputs are specified. The primary output of the reversible circuit is
connected to the target line of right most gate.

The attacker uses these telltale signs to recover the function

embedded in the reversible circuit. First, the attacker distinguishes

primary outputs from the garbage outputs and primary inputs from

the ancillary inputs using the two telltale signs. Next, the attacker

discovers the value of the ancillary inputs by:

(1) Partitioning the reversible circuit into sub-circuits.

(2) Identifying the ancillary input values of the sub-circuits.

Rogue in the foundry

1-bit adder

Step 1: Identify 

synthesis approach 

[22]

Step 2: De-synthesize 

reversible circuit 

(this paper)

0

Reversible circuit 

Sum

Carry-out

ESOP [25]TBS [27]

QMDD [28]BDD [26]

...

Figure 6: The "reversing the reversible circuit" threat model (i.e., steps involved in recovering the function from a reversible
circuit without access to the functional chip) [22]. This paper focuses on the step 2 of the attack.



The attacker partitions the reversible circuit into sub-circuits, where

each sub-circuit consists of the maximum number of adjacent re-

versible gates that match at least one sub-circuit in Figure 3
3
. Many

sub-circuits have a unique structure, which enables identifying the

ancillary input value. Others behave as universal gates, which can

be reconfigured to support different sub-functions depending on

the associated ancillary input value. In Figure 3, cases 4, 5 show

an example of a sub-circuit that can represent any two co-factors

depending on the ancillary input value. On the other hand, the

sub-circuits in cases 1, 2, 3, 6, 7 represent unique co-factors. When

the location of the ancillary inputs is known, the attacker applies

the two steps to recover the value of the ancillary inputs.

Example 9. Consider the reversible circuit in Figure 4. BDD-based
synthesis using Shannon decomposition was used to generate it. The
attacker identifies the primary output y5 using the second telltale
sign. Also, she/he identifies the location of garbage outputs y1, y2,
y3, and y4 as they are directly connected to the inputs (using the
first telltale sign). From the attacker’s perspective y6, y7, and y8 are
potential primary outputs. The attacker determines the location of
the ancillary inputs, x5, x6, x7, and x8 using the first telltale sign.
Next, the attacker partitions the reversible gates into sub-circuits. As
shown in Figure 4, the number of partitions is six. Consider pi as
the ith partition. p1, p2, and p3 are mapped to cases 7, 6, and 2 in
Figure 3, respectively. Thus, p1, p2, and p3 can be uniquely identified.
As a result, the values of ancillary inputs x6, x7, and x8 are 1, 0, and
0, respectively. However, p0 can be mapped to either case 4 or case
5. These two cases result in a different co-factor, which results in a
different ancillary input value. The number of embeddings depends
on the number of unknown ancillary inputs and potential primary
outputs. As a result, there are two possible functions for y5. For the
remaining outputs y6, y7, and y8, the number of possible embeddings
is one given that the number of possible embeddings for y5 is two.
Overall, the number of possible embeddings for the reversible circuit
in Figure 4 is 23 × 2. This number can be further reduced to 2 if the
attacker ignores the potential primary outputs. Thus, the attacker can
recover most of the target function of the reversible circuit.

4.3 Desynthesis of QMDD-based Reversible
Logic

QMDD-based synthesis in [32] transposes the permutation matrix

of the target function to the identity matrix by swapping columns of

the functional input assignments with other columns using Toffoli

gates. Following is the telltale sign of the embedding associated

with this QMDD-based synthesis:

(1) The maximum number of Toffoli gates is activated by func-

tional input assignments.

The attack exploits the telltale signs of the QMDD embedding

to reveal the target function embedded in a reversible circuit. The

attack is formulated as an optimization problem, in which the objec-

tive is to maximize the number of activated gates of the reversible

circuit. The rationale for the attack to return the functional an-

cillary inputs value is that reversible gates are inserted with the

objective of converting a non-reversible function into a reversible

one. These gates swap functional input assignment columns with

3
The partitioning maintains the BDD structure.

functional/non-functional columns to achieve the identity matrix.

Thus, the ancillary inputs value that activates themaximum number

of reversible gates is the one that realizes the target function.

The attacker traverses the reversible circuit, while keeping track

of the swap operations for different input assignments. The attacker

identifies the input patterns that activate the maximum number of

Toffoli gates using an automatic test pattern generation algorithm

(ATPG) [35]. The ATPG is used to generate test patterns that detect

missing target line faults, and thus, activate reversible gates. The

test patterns are ranked based on the number of detected faults.

The top test patterns are used to identify either the ancillary inputs

value for known location of ancillary inputs or the location of

primary inputs for unknown location of ancillary inputs.

We consider two attack scenarios. If the location of the ancil-

lary inputs is known, the attacker selects ancillary inputs value

of the test patterns that detect the maximum number of missing

target line faults. These patterns correspond to functional input

assignment columns with the maximum number of swap opera-

tions to construct an identify matrix. This attack is outlined in

algorithm 1. When the location of the ancillary inputs is unknown,

the attacker attempts to identify the primary inputs. According to

the embedding procedure, functional input assignments activate

the maximum number of Toffoli gates. Thus, the value of the ancil-

lary inputs of the top test patterns are expected to be fixed, while

some of the primary inputs can be fixed and others are different.

The attacker can identify the inputs with different values in the

top test patterns as primary inputs. The percentage of identified

primary inputs depends on the test patterns with maximum number

of detected faults.

Example 10. Consider the reversible circuit in Figure 5, where the
ancillary input is x1 and the other two inputs are the primary inputs.
The test pattern that activates the maximum number of missing target
line faults (2 faults in this example) is x1x2x3 = 011. If the attacker
knows the location of the ancillary input, he/she can use this test
pattern to reveal the value of the ancillary input (x1 = 0). However, if
the location of the ancillary input is unknown, the attacker observes
the difference in the top test patterns. In this example, there is only
one test pattern that detects the maximum number of faults. Thus, the
attacker can not distinguish between ancillary and primary inputs.

Algorithm 1: Attack circuits generated by QMDD synthesis.

Input: Reversible circuit
Output: Ancillary inputs value

Generate test patterns to detect missing target line faults.

for each test pattern do
Count the number of detected missing target line faults.

end
Sort the test patterns based on the number of detected faults.

return Ancillary input values of test patterns with maximum number

of detected faults.

Example 11. To illustrate the attack on QMDD-based reversible
circuits for unknown location of ancillary inputs, consider reversible
circuit in Figure 7. The ancillary input is x4. An ATPG generates two
test patterns, x1x2x3x4 = 0110 and 1000, that detect the maximum
number of missing target lines. x1, x2, x3 have different values in
these patterns indicating that they are primary inputs.
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Figure 7: Reversible circuit activates function for x4 = 0.

IP/IC piracy attack is expected to mis-predict most of the ancil-

lary inputs values when a reversible circuit generated using one

synthesis approach is de-synthesized using another synthesis ap-

proach. For example, de-synthesizing BDD-based reversible circuits

using QMDD-based synthesis can fail to identify ancillary inputs

values. In BDD-based reversible circuits, most of the control lines

are primary inputs, whose value determines whether a gate is acti-

vated. Input patterns that activate the largest number of reversible

gates may not contain the functional ancillary inputs value.

5 EXPERIMENTAL RESULTS
To evaluate the difficulty of extracting the implemented function

from a reversible circuit, we conducted various experiments. In each

experiment, we report the number of embeddings. First, we report

the number of embeddings of reversible circuits for the base-case

where the synthesis approach is not known. Second, we launch

the attack on BDD- and QMDD-based reversible circuits. We use

RevLib benchmarks [36].

5.1 Number of Embeddings as a Security Metric
In Tables 2 and 3, we count the number of embeddings of BDD-

and QMDD-based reversible circuits, respectively. In each table,

columns 1-5 summarize the benchmark, the number of inputs/outputs,

garbage outputs, and ancillary inputs, and the gates number of the

reversible circuit, respectively. Columns 6 and 7 provide the results

of the base-case prior to the attack. %G in column 6 reports the

percentage of identified garbage outputs due to the direct connec-

tion between some of the inputs and the outputs of the reversible

circuit. Column 7 reports the number of embeddings.

Table 2 shows that on average 42% of the garbage outputs in BDD-

based reversible circuits can be identified. However, the number of

garbage outputs of BDD-based reversible circuits is large because

every node of the BDD can produce a garbage output. Moreover,

the location and the value of the ancillary inputs are unknown.

Thus, the number of embeddings using equation 3 is large. Table 3

shows that on average 6.8% of the garbage outputs in QMDD-based

reversible circuits can be recovered – resulting in a large number

of embeddings. We conclude that without the knowledge of the

synthesis approach, identifying the target function is infeasible.

5.2 IP Piracy Attacks
5.2.1 BDD-based Reversible Circuits. In the second set of exper-

iments, we assume that the attacker knows the synthesis approach

used to generate the reversible circuit [22]. First, we launch our

attack on BDD-based reversible circuits. Columns 8 and 9 in Ta-

ble 2 provide the percentage of recovered ancillary inputs and the

Table 2: Results of the attack on reversible circuits created
using BDD-based synthesis.

Bench-

# # Basic + Synth. info.

I/O G A %G #Emb %L_ #Emb. Red.

mark Gates A #Emb

4mod5 7 6 3 8 66.7 1.50E+04 66.7 8.00E+00 2.00E+00

4mod7 12 10 8 30 40 1.40E+08 100 3.20E+01 1.00E+00

5xp1 30 20 23 90 30 3.50E+21 91.3 6.60E+04 4.00E+00

add6 54 47 42 159 25.5 2.60E+38 100 3.40E+10 1.00E+00

adr4 16 11 8 34 72.7 1.10E+10 100 8.00E+00 1.00E+00

aj-e11 16 12 12 42 33.3 1.80E+11 83.3 1.00E+03 4.00E+00

alu1 28 20 16 47 60 1.50E+18 93.8 5.10E+02 2.00E+00

alu2 105 99 95 452 10.1 2.70E+76 89.5 6.30E+29 1.00E+03

alu3 66 58 56 200 17.2 2.20E+48 76.8 2.30E+18 8.20E+03

alu4 541 533 527 2186 2.6 9.27E+376 93.4 5.90E+166 3.40E+10

apex2 498 495 459 1746 7.9 1.13E+317 96.3 2.40E+142 1.30E+05

apex4 547 528 538 2551 1.7 1.24E+382 91.4 1.20E+170 7.00E+13

apla 103 91 93 326 11 1.40E+77 82.8 1.60E+29 6.60E+04

sao2 74 70 64 211 14.3 3.70E+54 73.4 1.50E+23 1.30E+05

clip 66 61 57 228 14.8 4.50E+48 78.9 1.80E+19 4.10E+03

cm150 37 36 16 62 58.3 3.00E+22 0 2.20E+09 6.60E+04

cm151 49 40 30 94 47.5 2.60E+32 70 1.10E+09 5.10E+02

cm42 22 12 18 45 33.3 8.20E+15 50 1.30E+05 5.10E+02

cm82 13 10 8 30 50 4.10E+08 100 3.20E+01 1.00E+00

cm85 36 33 25 87 33.3 5.00E+24 56 8.60E+09 2.00E+03

cmb 43 40 27 50 40 4.40E+28 100 1.70E+07 1.00E+00

co14 27 26 13 63 53.8 6.30E+16 100 4.10E+03 1.00E+00

con1 16 14 9 32 50 2.20E+10 77.8 5.10E+02 4.00E+00

cordic 52 50 29 101 46 3.50E+33 79.3 8.60E+09 6.40E+01

cu 38 28 24 80 50 2.30E+25 66.7 4.20E+06 2.60E+02

dc1 20 13 16 56 30.8 2.30E+14 87.5 2.00E+03 4.00E+00

decod 35 19 30 82 26.3 5.40E+25 50 5.40E+08 3.30E+04

dist 79 74 71 307 10.8 1.20E+59 100 7.40E+19 1.00E+00

dk17 58 47 48 154 21.3 1.30E+42 77.1 2.80E+14 2.00E+03

ex5p 206 143 198 647 5.6 7.80E+157 65.7 1.30E+61 3.00E+20

ex2 105 99 95 25 10.1 2.70E+76 89.5 6.30E+29 1.00E+03

f2 16 12 12 41 33.3 1.80E+11 58.3 8.20E+03 3.20E+01

f51m 385 377 371 1648 3.7 1.40E+252 91.9 2.00E+118 1.10E+09

hwb6 46 40 40 159 15 9.70E+33 92.5 1.40E+11 8.00E+00

hwb7 73 67 66 281 10.4 5.00E+54 92.4 1.80E+19 3.20E+01

hwb8 112 105 104 449 7.6 1.30E+80 95.2 2.50E+30 3.20E+01

max46 54 53 45 190 17 2.10E+39 77.8 1.80E+16 1.00E+03

%misex3 428 414 414 1473 3.4 8.8E+312 68.6 3.50E+159 1.40E+39

mlp4 103 95 95 362 8.4 5.50E+77 94.7 5.00E+27 3.20E+01

sqn 40 37 33 134 18.9 1.00E+29 69.7 1.10E+12 1.00E+03

sqrt8 30 26 22 76 30.8 8.60E+20 72.7 1.70E+07 6.40E+01

xor5 6 5 1 8 100 7.30E+02 100 1.00E+00 1.00E+00

z4ml 14 10 7 30 70 6.10E+08 100 8.00E+00 1.00E+00

tial 578 570 564 2253 2.5 9.75E+379 94.9 1.30E+176 5.40E+08

number of possible embeddings after attacking the BDD-based re-

versible circuits used in the previous experiment, given that the

attacker knows the synthesis approach.

On average 81.6% of the ancillary inputs can be recovered. Thus,

the attacker can identify most of the target function even if the

location of the ancillary inputs is unknown. The large number of

possible embeddings in column 9 is due to the large number of

potential primary outputs. Although the attacker can recover the

location of primary outputs that satisfy the second property of

BDD-based reversible circuits in Section 4.2, he/she can not deter-

mine whether the outputs of sub-circuits, which are connected to

the reversible circuit outputs and also used to control other target

lines, are garbage outputs. Thus, the number of all primary output

combinations increases significantly. Our experiment summa-
rized in Table 2 shows that the attacker can identify all the
primary outputs of circuits created by BDD-based synthesis.
Thus, the number of embeddings of the BDD-based reversible cir-

cuits is reduced significantly, as illustrated in column 10 of Table 2,

by ignoring the potential primary outputs
4
.

4
If some of the discarded outputs are primary outputs, the reduced number of embed-

dings can still assess the difficulty of partially recovering the function.



5.2.2 QMDD-based Reversible Circuits. Assuming that the loca-

tion of the ancillary inputs is known to the attacker, we successfully

identified the values of all the ancillary inputs for 94% (i.e. 125-out-

of-131) of the reversible circuits, while we partially identified the

ancillary inputs value for the rest. These results use a naive test

pattern generation algorithm [35] to generate test patterns that de-

tect the maximum number of missing target line faults. These test

patterns share the functional ancillary inputs value, which activates

the target function. An advanced test pattern generation algorithm

using SAT-solver [35] can yield a higher percentage of reversible

circuits, in which the value of all the ancillary inputs is recovered.

The number of embeddings depends only on the number of possible

primary outputs, which is computed as 2
# possible pr imary outputs

,

excluding the leaked garbage outputs. Due to the space limitation

we don’t show the number of embeddings. However, it can be

computed using the data in Table 3.

We also consider the scenario when the location of the ancillary

inputs is unknown to the attacker. Table 3 shows the results on a set

of reversible circuits generated using QMDD-based synthesis when

the location of ancillary inputs is unknown. We consider the top

test vectors, which detect the maximum number of missing target

line faults. The eighth and the ninth columns indicate the percent-

age of identified locations of primary inputs and the number of

embeddings, respectively. Our attack can identify on average %13.9

of the primary inputs. The number of embeddings is large, and thus,

the attack can’t recover the target function. Although, for many

circuits the attacker can’t identify the primary inputs, the number

of embeddings using the attack is less than the corresponding one

for the base-case. This is because each ancillary input under the

proposed attack can have one possible value, which is given in the

test patterns with maximum number of faults.

A summary of the attacks result is provided in Table 4, where L_A.

indicates the percentage of leaked ancillary inputs. We conclude

that if the attacker can identify the location of the ancillary inputs,

she can recover most of the ancillary inputs values of a reversible

circuit, and thus, most of the target function.

6 CONCLUSION AND DISCUSSION
We assessed the difficulty of recovering the target function from an

embedding realized in terms of a reversible circuit. Identifying the

target function becomes challenging since, in contrast to conven-

tional circuits, reversible circuits do not directly realize the target

function, but a corresponding embedding. While such an embed-

ding may obfuscate the target function, it was unknown thus far

how secure the resulting circuit really is with respect to piracy. We

evaluated the effort and provided IP piracy attack strategies based

on circuits generated by BDD-based and QMDD-based synthesis.

Next we discuss the realism feasibility of the considered problem

and the threat model in a Q&A format:

Question:While theoretical interest might exist, isn’t the con-

sidered problem a niche area of research since most technologies

still rely on non-reversible CMOS circuits?

Table 3: Results of the attack on reversible circuits created
using QMDD-based synthesis.

Bench-

# # Basic + Synth. info.

I/O G A %G #Emb %PI_ #Emb.

mark Gates L

4mod5 5 4 1 6 75 3.60E+05 0 1.90E+02

4mod7 5 2 1 24 50 2.10E+07 0 1.20E+04

5xp1 10 0 3 439 0 1.80E+29 0 3.70E+19

add6_92 13 6 1 8151 0 2.10E+47 0 2.00E+31

adr4 9 4 1 560 0 1.50E+24 100 1.80E+16

alu1 18 10 6 4718 0 1.00E+87 0 7.80E+56

alu2 14 8 4 2524 0 2.00E+54 0 6.60E+35

alu3 14 6 4 2119 0 2.00E+54 0 6.60E+35

alu4 19 11 5 61599 0 2.40E+96 50 8.20E+62

apex4 26 7 17 4715 0 2.00E+175 44.4 3.10E+113

clip 11 6 2 1121 0 6.30E+34 0 1.50E+23

cm150 22 21 1 1067 9.5 4.10E+121 61.9 3.70E+47

cm42 13 3 9 73 0 2.10E+47 0 2.00E+31

cm82 6 3 1 51 0 6.00E+11 0 1.30E+08

cm85 13 10 2 418 10 2.40E+46 0 2.50E+30

cmb 20 16 4 3126 6.3 2.30E+103 0 1.10E+68

con1 8 6 1 69 0 3.70E+19 14.3 1.70E+13

cu 25 14 11 13124 14.3 6.80E+154 7.1 2.10E+93

dc1 10 3 6 55 0 1.80E+29 0 3.70E+19

dk17 19 8 9 5695 0 2.40E+96 0 8.20E+62

example2 14 8 4 2524 0 2.00E+54 0 6.60E+35

f51m 19 11 5 40146 0 2.40E+96 0 8.20E+62

misex3 28 14 14 131668 0 1.40E+202 7.1 1.10E+127

mlp4 13 5 5 851 0 2.10E+47 0 2.00E+31

sqrt8 9 5 1 124 40 4.90E+23 25 1.40E+11

table3 28 14 14 127998 0 1.40E+202 78.6 4.40E+130

squar5 9 1 4 77 0 1.50E+24 0 1.80E+16

sym9 10 9 1 338 0 1.80E+29 0 3.70E+19

x2 16 9 6 1014 0 5.10E+69 30 1.40E+45

Table 4: Summary of IP piracy attacks, where ↓, ↓↓, ↓↓, and
– indicate decrement, excessive decrement, excessive incre-
ment, and no effect, respectively.

Synthesis

Unknown Location of Ancill. known Location of Ancill.

% L_A. # Emb. % L_A. # Emb.

BDD ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓

QMDD – ↓ ↑ ↑ ↓ ↓

Response: As reviewed in Section 1, reversible logic is the ba-

sis for many applications and technologies. Significant progress is

being made in some of these directions. Additionally, considering

that conventional CMOS will reach its limit in the near future, it is

important to be prepared on the implications (also with respect to

security issues) which will come with applications/technologies re-

lying on different paradigms such as reversible logic. In this regard,

we would like to refer again to the discussion in [13] in which the

potential technologies based on reversible logic are emphasized.

Hence, a security assessment of reversible logic is timely.

Question: Is the study presenting a hypothetical reverse en-

gineering strategy? Why would an IC pirate want to extract the

non-reversible circuit when she/he already knows the reversible

circuit and the embedded non-reversible circuit?

Response: This is a realistic scenario. The adversary is an un-

trusted foundry who has the layout and does not know the func-

tionality. She/he is trying to reverse engineer the function. Further,

the distribution of the chips is strictly controlled (e.g. chips used by

the Govt and DoD). This is the state-of-the-art after IBM, a trusted

foundry, was acquired by Global Foundries. This paper focuses on

the IC/IP theft of reversible logic by an untrusted foundry. SAT

attacks do not apply as there is no oracle (i.e. a functional chip)

available to the attacker.



Question: The problem assumes (and shows) that the synthesis

process leaves telltale signs which the attacker can leverage. But

advanced synthesis algorithms may not suffer from this limitation?

Response: Even when we used optimized QMDD synthesis

approach, our attack identifies the ancillary inputs value for known

locations of ancillary inputs. This indicates that advanced synthesis

approaches leave telltale signs. Re-designing synthesis tools so that

they do not leave telltale signs is an important problem.

Question: Isn’t it reasonable to assume that the reverse-engineer

has some input/output pairs that she/he knows? Otherwise, it is

questionable why the attacker wants to steal IP in the first place.

Response: We consider an attacker in the foundry. We assume

that the chip is not publicly available. The malicious foundry does

not have access to functional I/O. In this untrusted foundry threat

model, the reversible circuits can be configured in many ways

depending on the garbage outputs and the ancillary inputs.

Question: Is revealing a high percentage of ancillary inputs

sufficient for a successful attack?

Response: Revealing a large number (and percentage) of ancil-

lary inputs alone is not enough for a successful attack. The attacker

should identify the location of the garbage outputs. Both the un-

known ancillary inputs and garbage outputs determine the number

of embeddings. However, the high percentage of identified ancillary

inputs indicates that while the attack is not fully successful, the

attacker can recover most of the target function. Our ideal secure

synthesis approach should result in a large number of unknown

ancillary inputs values and a large number of embeddings.
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